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Abstract

This paper reports on the performance of five parallel algorithms for simulating a fully associative

cache operating under the LRU (Least-Recently-Used) replacement policy. Three of the algorithms are

SIMD, and are implemented on the MasPar MP-2 architecture. Two other algorithms are parallelizations

of an efficient serial algorithm on the Intel Paragon. One SIMD algorithm is quite simple, but its cost

is linear in the cache size. The two other SIMD algorithm are more complex, but have costs that are

independent of the cache size. Both the second and third SIMD algorithms compute all stack distances;

the second SIMD algorithm is completely general, whereas the third SIMD algorithm presumes and takes

advantage of bounds on the range of reference tags. Both MIMD algorithm implemented on the Paragon

are general, and compute all stack distances; they differ in one step that may affect their respective

scalability. We assess the strengths and weaknesses of these algorithms as a function of problem size

and characteristics, and compare their performance on traces derived from execution of three SPEC

benchmark programs.
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1 Introduction

Associative caches arise in many contexts of computer systems: construction of memory hierarchies is a

notable case, caches are used also in file systems and databases. Any realizable cache has finite size, and

periodically one element must be discarded to make room for another. The Least-Recently-Used (LRU)

policy is frequently employed to select the element to be discarded, i.e., the item discarded is the one whose

last access time is farthest in the past.

A trace-driven cache simulation accepts as input a reference string xl, x_,..., XN of N symbols. Each

symbol identifies some cacheable element of memory, e.g., a cache line. Serial cache simulations process the

reference string one reference symbol at a time, with each new reference the simulation updates internal

data structures. For this reason it is convenient to describe time in terms of reference index--reference xt

is presented (but not yet processed) at time t. Ultimately one asks the simulation to determine for a given

cache size C (and frequently other parameters, such as line length) the fraction of references x_ such that the

symbol referenced at time t is a "hit", i.e., is already present in the cache. System designers wish to make

caches as small as possible while still achieving high hit ratios. Since referencing behavior largely determines

the cache's performance, designers customarily drive cache simulations with very long traces of observed

references. The LRU policy enjoys the "stack property" [5], which asserts that for any given trace, at any

time t a cache with capacity C ÷ 1 will contain all the references that a cache with capacity C would hold

at time t. The stack property allows one, for a given trace, to compute the hit ratio of a cache of any size

by knowledge of the siack distances. The stack distance of the t th reference is the smallest sized cache that

at time t already contains this reference's symbol. To determine the hit ratio for a cache of size C, one finds
the fraction of references whose stack distance is C or smaller.

Parallel algorithms for determining hit ratios for given traces are described in [3], and [6]. Only [6] reports

actual performance data, and that only on randomly generated traces. The contribution of the present paper

is to report on implementations of variants of these algorithms, in order to provide a better understanding

of the tradeoffs inherent in choosing an architecture, and algorithm, for parallel cache simulation.

Three of the algorithms upon which we report are SIMD algorithms, and rely upon massively parallel

operations such as scans [2], and sorting. The first is the "level-by-level" algorithm described in [6]. This

algorithm computes the stack distances for all references whose stack distances are C or smaller, C being

the maximum number of references the cache holds. The performance results previously reported were from

the MasPar MP-1 architecture, based on a randomly generated trace; the results reported here are from

the MasPar MP-2, both on random traces and traces of SPEC92 benchmark program executions [9]. The

algorithm has a computational cost that is linear in the maximal cache size considered, C. In our study we

consider PEs saturated at 1024 references each, and execute on 1K, 4K, and 16K PE machines. For each

machine size we vary C to determine the base cost and sensitivity to this linear term. The SPEC traces are

executed only on the 1K PE machine.

The second and third algorithms are variants of the "geometric" algorithm described in [6]. We present

the first known performance results for this algorithm. The algorithms differ in how they determine for

each reference the identity of the closest next reference in the reference string. One implementation is

completely insensitive to the distribution of symbols in the reference string; instead we consider its sensitivity

to increasing reference string length, as well as its performance on SPEC traces. The other algorithm is

similar, except it presumes and exploits bounds on the range B of reference symbols. When the reference

symbols can be bounded by a relatively small range, this algorithm is considerably faster the the general

algorithm. Our study of this algorithm concentrates then on determining the sensitivity of performance to
increasing B.

The MIMD algorithms studied are parallelizations of the efficient serial LRU simulation algorithm de-



scribedin [7]and[10].Thisalgorithmworksin thefollowingmanner.Foreveryreferencezt, let n(t) be

the smallest index u > t such that xt = xu, and let p(t) be the largest index v < t such that xt = xv. We

call n(t) and p(t) the "next" and "previous" occurrences of symbol xt. The serial algorithm we use (as well

as the parallel geometric algorithms) exploit the fact that the stack distance of xt is equal to the number

of unique symbols referenced between p(t) and xt, plus one. Given reference zt, one hashes on xt's symbol

to find the reference index of the last time that symbol was accessed. A second data structure, a search

tree, organizes all unique symbols seen so far, based the last reference time. Finding xt's representation in

the tree (with search key p(t)), we count the number of symbols in the tree with larger index. All of this

is accomplished with average cost that is logarithmic in the stack distance. We parallelized this algorithm

using the idea of [3] to split the reference trace temporally, and employ a "fix-up" phase at the end. Our

parallelized version was implemented on the Intel Paragon, using up to 64 processors. Our objective in

this study is to determine speedups achievable simulating moderately long SPEC references (8M to 95M

references each). Of particular interest is the relative cost of t he fix-up phase, and of two different ways of

performing the fix-up. One method uses as many communication steps as there are processors, the other

uses only a logarithmic number of communication steps. Surprisingly (and for reasons we later identify) the
latter approach is considerably less efficient on the traces we consider.

The remainder of the paper is organized as follows. Section 2 concerns the level-by-level algorithm;

section 3 describes the two geometric LRU algorithms. Both of these sections report on performance observed

using 1K, 4K, and 16K Maspar MP-2's, on randomly generated reference strings. Section 4 describes

the MIMD implementation of the efficient serial algorithm; comparative performance of SIMD and MIMD

algorithms on traces of three SPEC92 benchmark programs is examined in Section 5. Section 6 presents our
conclusions.

2 Level By Level Algorithm

One reason stack algorithms are so named is that one can always order (i.e., stack) all references in a cache

by the stack distance each would have if the next reference symbol were to name it. The seminal paper on

stack policies is [5]. The position of a symbol b in the stack at reference t is precisely the stack distance of xt

if xt = b. We mac- then view the behavior of a serial cache simulation algorithm in terms of how the stack

evolves as each reference is processed. Visually, the effect of processing zt is to remove xt from the stack,

"push" all symbols above that position down one slot and place xt at the top of the stack. Thus. a symbol

b's relative position in the stack is unaffected at time t if the symbol xt has a smaller stack distance than

would b. if x_ = b. As a consequence, if reference b attains position j in the stack at time t, it will remain

so up to some time z where either xz = b, or z_ references some symbol that is further down the stack

than b. This is illustrated in Figure 1. where arrows depict the migration of symbols downward in the LRU

stack until the symbols are re-referenced. The progression of symbol b is highlighted. Observe that symbol

b remains at the same level j in the cache over the longest contiguous sequence xt, xt+l,..., Xz-1 such that

each reference in the sequence has a stack distance of j - 1 or smaller each is a hit in a cache of size j - 1.

This observat ion is key, for if we can mark each reference in the string as being a hit or miss in a cache of

size j - 1. the references that are marked as misses also mark precisely where new symbols attain stack level

j. The symbols at stack level j do not change at any reference that is a hit in a cache of size j - 1. Using

this observation, given the hit,/miss status of every reference in a cache of size j - 1. we can determine the

symbols at stack level j at every point in time by marking each position where there is a miss. noting which

symbol attains level j at that point, and copy that symbol across the largest possible contiguous sequence

of hits. New hit/miss markings are computed following this copy step.
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Figure 1: Modification of LRU stack

PEs trace C=4 C=16 C=256 C=1024

1K rand-4 0.13 0.64 10.7 43.0

1K rand-1024 0.13 0.58 9.6 38.8

4K rand-4 3.3e-2 0.14 2.71 10.8

4K rand-1024 3.3e-2 0.14 2.40 9.7

16K rand-4 8.4e-3 4.0e-3 0.67 2.7

16K rand-1024 8.4e-3 3.6e-3 0.59 2.4

Table 1: Wallclock processing time per reference, in microseconds, for the level-by-level algorithm, as a
function of cache size C

The copy step is accomplished in parallel using a segmented copy-scan[2]. Techniques like this are

standard in SIMD programming, indeed the MasPar library contains numerous variations on scan operations.

The level-by-level algorithm computes stack distances a level at a time. First, all references with stack

distance 1 are determined. Next, all references with stack distance 2 are determined, and so on. The

complexity of each step is O(N/P + log P) on an EREW machine, the MasPar's asymptotic complexity is
slightly higher owing to its use of a mesh interconnection network.

The level-by-level algorithm considers the entire reference trace to be spread across all PEs, the first

PE receiving the first NIP references, the second PE receiving the second NIP references, and so on. An

advantage of this method is its simplicity, the entire program is barely 150 lines of code long. The major

disadvantage is that the execution time is linear in the number of stack levels considered, which makes

it ill-suited for contexts where the stack distance of every reference is required (not just those within the

maximum cache size).

The experimental results in Table 1 measure the sensitivity of the algorithm to the maximum cache size

C, and show that the algorithm scales that performance remains good as the problem size and architecture

size are simultaneously increased. The performance shown is based on strings where each element is sampled

uniformly at random from [1, k] (rand-k), with k = 4 and k = 1024. We provide data from runs on MasPar

MP-2 machines with 1K, 4K, and 16K PEs; in all cases each PE is responsible for 1024 references. The

performance figure given is the wallclock time per reference (in microseconds) expended simulating the entire

trace (i.e., the parallel execution time divided by the total number of references). The most important things
to note about this table are
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Figure 2: Geometric interpretation of LRU cache behavior

* for small cache sizes the algorithm is fast. This will be even more apparent when we see that our

implementation of the efficient serial algorithm, uses over 30 microseconds per reference on a 60MHz
Spare-20,

• performance degrades linearly, almost perfectly, as C increases, :

• performance improves linearly, almost perfectly, as the number of processors increases.

• There is a slight sensitivity to the number of symbols in the reference string. This is actually a

sensitivity to the hit ratio, as the cost of performing segmented scans increases as the number of
segments decrease, i.e., as the hit ratio increases..

The scalability and essential speed of the algorithm show that it should be seriously considered for simulation

of small sets, such as those commonly used in set-associative caches in computer systems.

3 Geometric LRU Algorithms

The fundamental idea behind the geometric LRU algorithm is that the number of unique symbols between

reference x_ and p(t) can be computed from a geometric analysis of a two-dimensional plane wherein are

are plotted all points of the form (t, n(t)). Figure 2 illustrates the point by plotting all points (t, n(t)) for a

sample reference string, and connects points associated with a common symbol with line segments. Between

the reference to symbol a at t = 0 and t = 8 we find seven references--but only two unique symbols. In order

to count each unique symbol only once, for each symbol occurring in It, n(t)] we identify the last reference

to that symbol by detecting references u 6 It + 1, n(t) - 1] such that n(u) > n(t). In Figure 2 we see two of
these.

To count these symbols in parallel we use the notion of a point (x, y)'s rank-the total number of plotted

points (u, v) that dominate (x, y), i.e., x < u and y < v. The stack distance of xt is one plus the number of

points points of the form (u, n(u)) with p(t) < u < t that dominate (p(t), t). Since every point (v, n(v)) with

v > t dominates (p(t), t), we find the stack distance of xt by computing the rank of (p(t),t), and subtract
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N - t. (Note that this is a simplification of the calculation given in [6]). The rank of (0, 8) in Figure 2 is
two, hence the stack distance of xs is three.

Ranks can be computed on a SIMD machine by parallelizing an algorithm based on the multidimensional

divide-and-conquer paradigm described in [1], as follows. Let us say that the rank of a point (x, y) over

interval [u, v] is the total number of plotted points of the form (a, b) that dominate (x, y), and x < a < u.

Then for any z > v, the rank of (x, y) over [u, z] is equal to the rank of (x, y) over [u, v], plus the number of

plotted points whose X coordinate is in Iv + 1, z] and whose Y coordinate exceeds y (note we assume integer

coordinate values throughout). For any c E [v + 1, z] the rank of (c, d) over [u, z] is just its rank over [v, z].

Ranks can be computed in parallel using parallel merge and parallel prefix operations, as follows. Imagine

that we have two equal length adjacent subsequences of references (say, 0-3 and 4-7) sorted on their n(t)

values. References xt for which n(t) is not defined (Le., the last reference in the string to a particular symbol)

are taken to have n(t) = N + t, but will not have meaningful ranks assigned. Presume further that the rank

of each reference over its present subsequence is known. We associate a tag of 0 with every reference in the

"left" subsequence, and a tag of 1 with every reference in the "right" subsequence. A partial trace, and

partitioning into subsequenees 0-3 and 4-7 is illustrated in Figure 3. Next we merge the two subsequences

on the n(t) value into a larger sequence, carrying along inthe merge the t, rank, and tag fields. This merge

step can be performed in parallel, e.g., using a bitonic merge (see [4]). Since this merge executes precisely

the same number of instructions regardless of symbol value, the algorithm based on it has performance that

is independent of the symbol string. Following the merge we update the ranks. Any reference position whose

tag field is 0 adds to its rank field the number of set tags that lie to its right in the new sequence. This

count is precisely the number of points from the right subsequence whose n(t) value dominates the reference.

Now these counts can be obtained in parallel for all references using a "postfix-sum" operation (a prefix-sum

running:from right to left). The final step is to prepare the new sequence for the next step by determining

(by position) whether the sequence is "left" or "right" at the next level of the algorithm, and to set the tag
bits accordingly.

Using this basic operation, the stack distances are computed in logN steps. Given that the n(t) values

are known , the first step partitions the reference string into N subsequences, each of length 1. Each group is

trivially sorted on the n(t) value, and the ranks are all trivially zero. The merge/postfix step is carried out

on all groups in parallel , creating subsequenees of length 2, which are merged/postfixed into subsequences

of length 4, and so on, until the last merge/postfix step leaves us with the entire reference string as a single

sequence. The record associated with xt holds the rank of n(t) (if defined), and hence the stack distance

of n(t). A final assignment moving the stack distance of n(t) to its own reference and processor may be

performed, although this is not logically necessary for the computation of hit ratios.

Both of the geometric algorithms we study use the merge/postfix operations above. They differ in their

computation of the n(t) values. The general algorithm computes the n(t) values by first sorting stably on the

reference symbol. Two-word records are carried along in the sort, the symbol as well as the reference index

where the symbol occurred. Following this step the n(t) and p(t) values of reference xt are easily discovered

by examining the reference index field of adjacent records. The n(t) and p(t) values can be carried back to

xt's "home" location with another sort, this one on t. Our implementation of the sort is based on Jan Prins'

implementation of the bitonic sort algorithm [8]. This approach is convenient, but is overkill in the sense

that the total sorted order is not required to find n(t) and p(t). As we will see, the convenience comes at a
severe performance cost.

The second geometric algorithm assumes that all reference symbols lie in a range [0, B]. Then, for each

symbol b E [0, B], a backwards segmented copy-scan is performed where segments begin with references

whose symbol is b, and the value propagated (backwards) is the symbol's reference index. Following the

: i:,̧ : .



n(t) 1524768 n(t)

t 0123456789 t

symbol a a b c c a a c a b rank(n(t))

Partial trace

tag

1459 67

031254

301022

0000 11

Pre-mergestate

n(t) 1456789N+7

t 03154627

rank(n(t)) 7452211

8 N+7

67

1 -

11

tag 00011101

Post merge/postfix state

Figure 3: Parallel computation of ranks using merge and postfix operations

i(

copy-scan, the reference immediately to the right of one with symbol b will hold the reference position of

the nearest reference to the right with the same symbol. The copy-scans are fast, but the simulation's cost

degrades linearly in B.

Table 2 plots the wallclock processing time per reference of the general geometric algorithm, as a function

of the number of references mapped to each PE, and the architecture used. The most striking feature of this

data relates to this algorithm's ability to scale. There is clearly some advantage to increasing the number of

references assigned to a PE, up to a point, after this the performance begins to decline. The decline is even

more pronounced as we multiply the number of PE's used--the 16K PE instance of the problem runs only

6 times faster than the 1K version. However, consider that for a fixed number of references/PE the 16K

PE problem processes a reference string that is 16 times longer than the corresponding 1K PE problem and

which contains the entire trace processed in the 1K PE case. The 16K PE solution determines stack distances

for some references in the 1K PE substring that the 1K PE solution did not (references xt where n(t) lies

outside of the substring). To compare the algorithms on a completely fair basis we would need to modify the

algorithm to permit the 1K machine solve exactly the same problem as does the 16K machine. However, just

an adjustment would not matter a great deal on the problems reported here, as its additional overhead is

quite small. One approaches the problem with phases, in each phase the reference string processed consists

of references xt from previous phases whose n(t) not yet been discovered, and new references. At the end of

a phase all references xt without matching n(t) are together at the right end of the machine (being sorted

on their n(t) values, defined, conveniently, to push them to the right). To prepare for the next phase we

simply need to move those references to the left end of the machine. On the runs presented here the number

of unique symbols is 1024 or 4, meaning that the amount of data to be moved is not large, and that the

number of symbols left over from previous phases is insignificant compared to the number of new references

brought in for a new phase. To explain the failure to scale we must look to a different source. The cause

is understood when we examine the bitonic sort underlYing the algorithm. Its cost increases in the square
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PEs

1K

4K

16K

References per PE

2 4 8 16 32 64 :128 256 512 1024

98.8 69.5 27.0 23.8 22.7 22.7 22.7 23.2 23.8 24.5

16.5 12.4 10.5 9.69 9.38 9.33 9.41 9.55 9.73 9.92

5.93 4.88 4.33 4.11 4.03 4.02 4.04 4.09 4.13 4.19

Table 2: Wallclock processing time per reference, in microseconds, for the general geometric LRU algorithm,

as a function of the number of references/PE and number of PEs

Reference range size B

PEs 4 8 16 32 64 128 256 512 1024 2048 40096 8192 16384

1K 2:63 2.83 3.06 3.42 4.05 5.18 7.35 12.2 17.1 26.3 42.5 73.5 134.8

4K 0.659 0.712 0.771 0.862 1.02 1.30 1.84 2.95 5.15 9.05 14.9 24.2 40.3

16K 0.166 0.178 0.193 0.217 0.257 0.326 0.463 0.740 1.29 2.40 4.60 8.50 14.4
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Table 3: Wallclock processing time per reference, in microseconds, for the bounded reference range geometric

algorithm, as a function of reference range B and number of PEs

of the logarithm of N, furthermore, the additional steps are more costly as they involve data movement

over farther distances (the algorithm uses the :MasPar's xnet pipelines). It would appear that both factors

contribute significantly to the observed performance, since the ratio log 2 2N/log 2 2N+4 accounts for only

about 50% of the observed performance degradation.

Now consider the behavior of the version which exploits bounds on the range of symbols. For the data

presented in Table 3 we saturate every PE with 1024 references, and consider how performance varies with
increasing bound range, B.

Comparison of Table 2 and the 1024 refs/PE data in Table 3 reveals some interesting features. First, that

when B is very small, the bounded range algorithm is an order of magnitude faster than the general algorithm.

This fact shows that the cost of the general algorithm's implementation is dominated by the n(t) calculation.

Second, that for the low values of B, the performance gain is nearly linear as the number of PEs increases.

This suggests that the performance degradation observed in the general algorithm's implementation is due to

behavior of the n(t) calculation, and not the merge/postfix step. For very large values of B the performance

of the bounded reference algorithm scales sublinearly, but is dominated by the cost of repeated segmented

copy-scans in the n(t) calculation. The cost of this operation is O(N/P -i- p1/2) on the MasPar, and the

degradation may be understood as a result of the p1/2 communication term.

Comparison of the two geometric-based algorithms illustrates the importance of the n(t) calculation.

There is clearly room for improvement in the general algorithm's implementation; the performance of the

bounded reference algorithm with small B gives an upper bound on the improvement we can hope for. It is

pointed out in [6] that direct algorithms for computing n(t) in O(log N) time are known; it appears to be

an approach worth investigating.
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4 MIMD Algorithms

The fundamental idea for using MIMD computers for trace-driven LRU simulation was reported in [3]--given

P processors, N references, and a C line cache, divide the trace into NIP contiguous subsequences, allocated

one per processor. Have each processor assume it begins with an empty cache, but lake note of the misses

that occur before the cache is full. At the end of processing its subtrace, processor i sends to processor i + 1

the contents of its C-line cache at the end of its simulation. These contents are precisely the starting state for

processor i + l's simulation, and can be used to resolve the actual hit/miss status of the references processor

i + 1 noted as misses to an non-full cache. If processor i + l's cache is not full at the end of its simulation, it

may happen that a symbol reported to it by processor i is in i + l's cache throughout the entire subtrace,

and so must be reported to processor i + 2. This sort of logic carried out in full shows that in the worst case

an O(P) communication step is needed to "fix-up" the simulation.

It is convenient in the discussion to follow to consider the processors to be in a linear array, arranged

from left to right by increasing index. Our simulation has the processor to which p(t) is assigned compute

the stack distance for xt. After simulating their subtraces, processor i will have references xs for which n(s)

lies on some processor to the right (if at all), and processor i+ 1 will have references xt for which p(t) lies on

some processor to its left (if at all). Consequently, in order to fix-up the simulation between processor i and

i + 1, we may have processor i + 1 send to processor i a message reporting the identity and reference index

of the first occurrence of every unique symbol observed by processor i + 1. This list, if sorted by increasing

reference index, may be treated exactly as additional references to be simulated. However, any new symbol

received that processor i did not itself reference must be passed along to processor i - 1. This observation

led us to pipeline the fix-up operation. A processor receives a bundle of unresolved symbols (sorted by

increasing reference index) and attempts to resolve each with a match in its own hash table. Failure to

find a match causes the symbol and its reference to be placed in a table for later transmission, otherwise

the stack distance for the symbol is computed and the symbol is stored in the processor's tree of unique

references (this is required to correctly compute the stack distances of references that might later be received

during fix-up). At the end of this filtering step the processor sends the accumulated table of still unresolved

references (which are still sorted on their reference index) to the processor on its left. The communication

complexity of the pipelined approach is O(P - 1), since processor 0 receives up to P - 1 messages.

It has been noted by others 1 that the time-partitioning approach can be extended to simulate many

cache sizes and set-associativities, and that the fix-up step can be done with a "fat-tree" merge. The

solution described privately to us presumes the existence of many sets; we have adapted however the basic

observation that the fix-up process is associative,• as follows. Like the pipelined approach, our messages will

flow from right to left, and but will be based on postfix computations. The algorithm has log P steps. Prior

to the first step every processor i defines list Li to include all unique symbols referenced by processor i,

sorted by increasing index of first reference time. These references are ones which are unresolved, their stack

distances aren't yet known. In each of logP steps, processor i will send Li to processor i - 2J provided

i -- 2j _ 0; it will receive list Li+2J from processor i + 2j, provided i + 2 j < P - 1. Processor i filters Li+2J,

checking each reference for a match in processor i's hash table. Any reference not already found in the hash

table is appended to Li, and is inserted in both the hash table and search tree. If a reference xt is found to

already be in the hash table, we check whether the last recorded reference to it was by a reference originally
assigned to processor i. If so, its stack distance is computed.

To establish the correctness of the algorithm consider how an unresolved reference xt originating at

processor i propagates. In the first step it is sent to processor i- 1. Supposing it is not resolved there, in

aPrivate communication from Mark Hill, Gurindar Sohi, and Madhusudhan Talluri



NumberofProcessors
Trace fix-up 4 8 16 32 64

spec001pipelined
spec001 postfix
spec026pipelined
spec026 postfix
spec090pipeliued
spec090 postfix

1.1(0.7%) 1.3(1.7%) 1.5(4.0%) 1.8(9.._%) 1.9(17.2%)
2.5(1.6%) 3.0(3.9%) 4.3(10,6%) 4.9(21.9%) 5.2(36.7%)
2.3(1.9%) 3.0(4.8%) 2.0(6.1%) 1.8(10.3%) 1.8(17.4%)
4.6(3.7%) 5.7(8.7%) 6.4(17.2%) 6.8(30.(f%) 7.0(45.2%)
1.1(0.8%) 1.2(1.9%) 2.0(6.0%5) 2.1(11.4%) 2.2(20.5%)
3.1(2.4%) 4.1(6.1%) 5.4(14.5%) 6.6(28.4%) 7.5(46.4%)

Table4: Fix-uptimeson threeSPECtraces,in seconds,asa functionof fix-upmethodandnumberof
processors.Percentageof totalexecutiontimespentin fix-upphaseisalsogiven

thesecondstepbothi and i - 1 send it, to processors i - 2 and i - 3 respectively. Failing to be resolved at

either of these, four processors now send it as part of their lists, to include processors i - 4,i - 5,i - 6, and

i - 7. So long as xt remains unresolved, at the end of the jth communication step (j = 0, 1,..., logP - 1),

all processors i - 22 to i have xt in their unresolved lists. Now consider what happens xt is resolved in step

j, e.g., p(t) is found in some processor k between processors i - 2J and i - 2J-1-1. Of course, processor k

will not append xt to Lk. But what of the other processors whose 1-ists already contain xt? They continue to

include xt in their lists, but for all subsequent communication steps, xt will be filtered out by every processor

that receives it. The simple reason for this fact is that any processor to which processors i through i - 22

send messages will have at that point already received a reference with the same symbol as xt, because p(t)

(or one of its predecessors with the same symbol) is closer to that processor than is any copy of xt.

• The decreased number of communication steps in this approach is counterbalanced by an increased volume

of communication and computation. In the pipelined approach an unresolved reference is represented in at

most one message at any time. Furthermore, once the reference is resolved no further computation is

expended on its behalf. This is not the case with the postfix approach, since every replica of an unresolved

reference must be sought for in every processor to which it is sent. There is a trade-off then between the

number of parallel communication steps, the communication volume, and the fix-up computation costs.

Surprisingly it turns out that on the size of machine we used, up to 64 processors, the pipelined approach

enjoyed substantially better performance. Table 4 reports the fix-up times observed using the pipelined and

postfix approaches, on 4,8,16,32, and 64 Paragon nodes, on three SPEC benchmark traces (spec001.cexp.pdt,

spec026.comp.pdt, spec090.hydro.pdt in the TraceBase depository at New Mexico State University). Ea.ch

run simulated the first 223 references of the trace. The times shown are in seconds. With each timing we

indicate in parenthesis the fraction of the total execution time spent in the fix-up phase.

On the traces studied it is apparent that the additional costs of the scalable fix-up method substantially

outweigh its advantages, at least for the range of processors considered. However, one must also bear in

mind that when a long subtrace is loaded on each processor (as with the 4 processor data), the fix-up time
is only a small fraction of the overall running time.

5 Performance on SPEC Traces

Finally, we present measurements taken from runs driven by traces derived from SPEC92 programs [9]. The

traces were obtained from the TraceBase facility, maintained by the New Mexico State University (available
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by anonymous ftp to tracebase.nmsu.edu). The particular traces used in this study were of the 001, 026,

090, and 097 programs in the SPEC92 suite. Their names in the TraceBase facility are spec001, cexp.pdt,

spec026, comp.pdt, spec090.hydro.pdt, and spec097.nasaT.pdt. These particular traces were selected

for reasons of length. The references were all processed in the order represented in the trace, in particular

no distinction is made between data and instruction references. We do assume a 16-byte cache line, and so
mask off the bottom four bits of every reference.

Figures 4, 5, and 6 plot the speedups of three 8M reference traces on 1 to 64 nodes of the Intel

Paragon. For these ratios, the base serial processor timings are 70.8, 59.4, and 61.7 p-sec/reference, for

traces spec001, cexp. pdt, spec026, comp.pdt, and spec090.hydro.pdt, respectively. The simulation is

written in C++, and compiled under g++. The perfect speedup line is also plotted on each curve. In

considering this data one should keep in mind that the trace length is kept fixed--the individual subtraces

are unrealistically small for large processor populations (e.g., 0.25M references/processor for the 64 processor

case). Each Paragon processor has approximately 24 Mb available for program and data, given a tremen-

dously long trace one would use all that memory. Nevertheless, the data does make the point that excellent

performance is achievable, even when the trace is relatively short.

We did also simulate longer reference strings, spec097.nasa7.pdt contains approximately 95 million

references. Using 64 processors and varying the string length between 8M and 95M references we observed

that the waUclock processing time per reference dropped from 1.34 #-secs/reference, to 0.89 p-secs/reference

(using pipelined fix-up). This is a 50% improvement due simply to increasing the length of subtrace simulated

at each processor. Observe that this level of improvement would bring the 64-processor speedups of the other
traces up to near perfection.

Table 5 provides the wallclock processing time per reference, in microseconds, for selected numbers of

Paragon processors (using pipelined fix-up), the level-by-level algorithm, the general geometric algorithm,

10
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Trace

Sparc-20

specO01 35.2

spec026 31.8

spec090 33.6

Paragon Nodes

1 4 16 64
Level-by-Level:C Geometric

4 16 64 256 1024

59.4 14.7 3.9 1.23 0.13 0.58 2.4 9.6 38.6

70.8 17.6 4.46 1.29 0.13 0.63 2.7 10.9 43.9

61.7 15.0 4.0 1.3 0.13 0.62 2.6 10.7 43.1

22.5

22.5

22.5

Table 5: Wallclock processing time per reference, in microseconds, for various parallel implementations on
three SPEC benchmark traces.

and the one-processor version on a Sparc-20. All SIMD runs were performed on a 1K PE MP-2, on the first

2_° references of the trace. One first notes that the processing time per reference does vary from trace to

trace. On the Paragon this is due to differences in average stack distance, as the underlying serial algorithm's

cost increases with increasing average Stack distance. This may explain why the level-by-level results begin

to differ for large values of C. As noted before, our implementation of the general geometric algorithm is
completely insensitive to the trace.

In comparing these numbers, we observe that our implementation of the general geometric algorithm is

simply not competitive. This highlights the previously expressed need to optimize the n(t) calculation. If the

geometric algorithm were, say, 10 times faster, it would enough faster than even the Sparc-20 implementation

to consider (provided one had sufficient IO capability to deal with much longer traces adequately). Next we

observe that the level-by-level algorithm is extremely competitive--on small cache sizes. Fortunately small

set sizes are the norm in studies of computer caches; this algorithm promises very high performance in that

setting. But for the problem of computing all LRU stack distances regardless of cache size, one must conclude

that the most robust approach considered here is MIMD. The size of the MIMD processor memories and the

very low coupling between processors throughout the life of the computation promise excellent performance

gains. Furthermore, parallelization requires only relatively minor modifications to existing efficient serial
simulators.

6 Conclusions

This paper studies the performance of five algorithms for trace-driven simulation of a fully associative cache

that use the LRU replacement policy. Three of the algorithms are SIMD, and are implemented on the

MasPar MP-2. Performance data from 1K, 4K and 16K PE machines is presented. Two of the algorithms

are MIMD, and are implemented on the Intel Paragon. Performance data using 1 to 64 processors is reported.

We study the implementation's sensitivity to various parameters using randomly generated traces; we also

report performance achieved using 8 to 95 million reference traces of several SPEC benchmark programs.

We find that an SIMD algorithm that presumes small limits on set size is fastest, but that the MIMD

algorithms are the most robust. We also discover that on the traces considered, the scalable version of the

MIMD Mgorithm has sometimes markedly poorer performance than its non-scalable counterpart. However,

the relative different between pipelined and associative fixup schemes is likely to be different under the

realistic assumption of many sets (in a set-associative cache) and a small upper bound on the number of
lines permitted each set.

Cache simulation is an important part of designing many different types of computer subsystems. Trace-

driven cache simulations are computationally intensive, but parallelizable. The experiments reported in

this paper help to clarify the issues involved in choosing an approach for parallelized trace-driven cache

/:
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